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ABSTRACT 
This paper presents approximate analytical solutions for the diffusion problems of a cylindrical hole in an 
infinite medium and a slot in an infinite medium with properly prescribed boundary conditions and initial 
conditions. These solutions have much simpler forms than those of exact analytical solutions, and 
asymptotically approach the exact solutions with increasing time or the material point moving away from the 
internal boundary. The approximate analytical solution for the diffusion problem of a slot in an infinite 
medium is applied to establish a shape function for the infinite elements. Good agreement is found in 
comparison of our results with those presented by Li and Huang and Cinco-Ley et al. Finally, an example 
simulating a primary recovery procedure in hydraulic fracturing technique for an oil field is presented. 
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INTRODUCTION 

Boundary-valued diffusion problems in unbounded media are of important significance in 
engineering practice, especially in geotechnical engineering applications. It is well-known that 
both thermal conduction and seepage problems are in the class of diffusion problems. Oil recovery 
and underground water recovery are the examples of seepage problems, in which the boundaries 
of pay-zones are usually unknown but far from the production wells. Artificial ground freezing 
and geothermal energy extraction can be the examples of thermal conduction problems, in which 
the regions to be analysed are of small dimensions in comparison with the surrounding media. It 
is natural to idealize these problems as the interested areas in infinite domains. 

In the conventional finite element method for diffusion problems, an infinite domain is 
replaced by a sufficiently large domain. The boundary value defined on the internal boundary is 
supposed to have a negligible influence on the outer boundary of the domain. Results obtained are 
generally good for the case of small time. However, with the increasing time, the internal 
boundary value will perturb the outer boundary eventually, no matter how large the finite domain 
is. Furthermore, a large number of nodal points may be involved in analysing the large domain. 

Jaeger1 provided an analytical solution of temperature field for radial heat flow problems. He 
studied the case of a cylindrical hole located in an infinite medium with a prescribed constant 
temperature on the hole boundary or a prescribed constant flow rate of heat in the hole. This 
solution is expressed in a singular integral form. Kucuk and Brigham2 presented an analytical 
solution for the problem of a slot located in an infinite medium with a prescribed constant pressure 
on the slot surface or a prescribed constant flow rate in the slot. Li and Huang3 presented an 
extrapolation method to estimate the solution for an infinite medium. This method extrapolates a 
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series of solutions of finite media by means of the finite element method to find the solution for 
the infinite medium. With the use of Green's function, Cinco-Ley et al.4 developed a semi-
analytical method to estimate the solution for the problem of a rectangular finite conductivity 
fracture in an infinite medium. 

In the past few decades, research effort has been expanded in developing infinite elements, 
which are well suited to modelling the remote region in the unbounded medium. The pioneer work 
in this field might have been done in the 1970s5"8. This method has been developed by several 
authors afterwards. The infinite elements can be classified into two categories: 

(1) the infinite elements in which the shape functions are expressed in some decay functions 
with the distance from the material point to the decaying origin approaching infinity, e.g. 
the shape functions with 1/rn type decay or exponential type decay5,9-11. Integration in the 
infinite elements based on the decay functions results in finite values; 

(2) the infinite elements which are mapped onto finite parent elements with local co-ordinate 
parameters12"15. After mapping, the shape functions in the infinite elements can be 
expressed in a set of polynomial terms varying as 1/r, 1/r2,1/r3, etc. The advantage of this 
approach is that the integration in the infinite elements can be proceeded in the finite 
parent elements. Algorithms for the mapped infinite elements follow the finite element 
procedure so closely that they can be readily implemented into existing finite element 
programmes. If the shape functions can well depict the behaviour of the physical quantities 
in the infinite region, good results are usually obtained. The infinite elements based on 
these shape functions are extensively used in analyses of stress/displacement problems, 
diffusion problems, wave propagation problems, etc. in unbounded media. 

In this paper, approximate analytical solutions for the diffusion problems which were solved by 
Jaeger1 for thermal conduction problems, and by Kucuk et al.2 for seepage problems are 
presented. These approximate solutions have much simpler closed forms than their solutions. 
These approximate analytical solutions are applied to establish shape functions for the infinite 
elements for the problem of a conductive fracture in an infinite medium. The results are compared 
with those presented by Li and Huang3 and Cinco-Ley et al.4. Results for a seepage problem of a 
conductive vertical fracture with an elliptic shape in an infinite slab reservoir are presented as an 
example. 

APPROXIMATE ANALYTICAL SOLUTIONS 

Since both thermal conduction problem and seepage problem belong to the class of diffusion 
problems, the two problems will not be distinguised in the following, but are generally called 
diffusion problems. 

A single well in an infinite medium 
The differential equation for axially symmetric diffusion problems can be expressed, in a 
cylindrical polar co-ordinate system, as: 

where 
φ = Pore pressure for seepage, or temperature for heat conduction 
r = Polar radius 
t = Time 
κ = Coefficient of diffusion. for heat conduction and for seepage 
k = Coefficient of heat conduction 
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ρ = Mass density 
c = Special heat for heat conduction, or compressibility of fluid for seepage 
Κ = Permeability coefficient of the medium 

The function of φ is independent of polar angle θ because of the axial symmetry. 
The initial condition is 

Φ(r,o) = Φ0 (2) 
where φ0 is an initial constant value of φ. The boundary condition on the hole wall is: 

Φ(a,t)=Φw (3) 
or 

where a is the radius of the hole, φκ and Φw'are given constants. The condition at infinity is: 

lim Φ(r,t) = φο ( 5 ) 
r→∞ 

Let us take the trial function: 

where Ei is the exponential integral. It can be easily proved that function φ in equation (6) satisfies 
the initial condition, equation (2), internal boundary condition, equation (3), and the limiting 
condition, equation (5). The trial function φ does not satisfy differential equation (1). However, 
substituting φ into equation (1), we find that the residual of the left-hand side of equation (1) 
vanishes for large time t or large radius r. Thus, function φ in equation (6) is a good approximate 
solution for large t or r. 

The exact solution presented by Jaeger1 is: 

where J0 and Y0 are respectively the first and second kinds of Bessel functions of order zero. 
Numerical results of equation (7) are given in a dimensionless form of φD against tD (Figure 1), 
where 

Then the values of φD are calculated against tD according to equation (6) and compared with the 
exact solution by Jaeger as shown in Figure 1. The tendency that the approximate analytical 
solution approaches the exact solution with increasing time t or radius r can be clearly seen. 
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Although equation (6) is merely an approximate solution, it has a much simpler form than the 
exact solution, equation (7). 

Second, let us investigate another function: 

If the flow rate q is prescribed for the seepage problem, equation (10) can be,rewritten as: 

where A is the thickness of the medium. The flow rate q is defined positive for flowing into the 
medium. It can be found that function ∞ in equation (10) satisfies the initial condition, equation 
(2), internal boundary condition, equation (4) and the limiting condition, equation (5). 
Substituting φ as shown in equation (10) into equation (1), it can be found that the residual of the 
left-hand side of equation (1) vanishes if r or t approaches infinity. 

A slot in an infinite medium 
Set the origin of the Cartesian co-ordinate system at the centre of the slot and the x-axis parallel 
to the slot. The differential equation of the diffusion problem can be expressed as: 

Employing the following transforms: 
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equation (12) becomes: 

where L is the half length of the slot, ξ and η are the elliptical co-ordinates. The exact solution of 
equation (14) was given by Kucuk2 as 

where 
λ = Integral parameter 
Aδ2n) (λ) = Fourier coefficient 
Ce2n(ξ, λ), Fey2n(ξ, λ) and ce2n(n, λ) = Matthieu functions 
ξw = The value of ξ on the slot surface, here ξw = 0 
tD = The dimensionless time defined by: 

Obviously, it is very difficult to carry out the integration as shown in equation (15). In the 
following, we will search for an approximate solution. 1 

For large ξ, we have coshξ >> cosh and cosh ξ sinh£ ≈½eξ Hence, equation (14) can be 
approximately rewritten as: 

The initial condition can be written as: 

Φ (ξ,n, 0) = Φο (18) 
The boundary condition on the slot surface is: 

Φ(0,N;T) = Φw (19) 

Function φ should satisfy the limiting condition at infinity, i.e. 

It can be easily proved that function: 

satisfies conditions, equations (18), (19) and (20), and the residual term of equation (17) 
approaches zero for large ξ or t when substituting the function into equation (17). Hence, function 
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φ shown as equation (21) is a good approximate solution for large ξ or t. It is noted that equation 
(21) does not include parameter η. It means that the distribution of Φon any constant ξ-curve for 
large ξ is uniform. 

According to equation (21), the flow rate in the slot can be expressed as: 

Let us employ the dimensionless forms of the flow rate used by Kucuk2: 

Kucuk2 presented the numerical results of qD against tD using his exact analytical solution, 
equation (15). In Figure 2 the results of qD from equation (23) are plotted and compared with 
those presented by Kucuk. It is found that the two qD's have large difference initially, nevertheless 
they are close to each other gradually and finally nearly the same. 

For presented constant flow rate q, it can be proved that a good approximate analytical solution 
for large ξor t can be obtained as: 

Kucuk2 employed the dimensionless form of φ as: 
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With the use of equations (24) and (25), we have the expression of the dimensionless form of φD 
on the slot surface as: 

which is the inverse of equation (23). Comparing the numerical results of φwD as shown in 
equation (26) with those presented by Kucuk2, it is found that the results of this study are close to 
Kucuk's results for large tD (Figure 3). 

THE FINITE AND INFINITE ELEMENTS METHOD FOR A SLOT IN AN INFINITE 
MEDIUM 

For the diffusion problem of a slot in an infinite medium, our approximate analytical solution is 
not good for small time t or small distance from material point to the slot. In this case, the finite 
element method can make it up. The domain of the diffusion problem should be so large that on 
the outer boundary we have e2ξ » 1. The boundary condition on the outer boundary can be 
determined by the approximate analytical solution, equation (21) or (24). This method is 
equivalent to that of employing an infinitely large element outside the finite domain (Figure 4). 
However the latter is more effective than the former, especially in the case that the value of φ 
varies on the slot surface. 

First, let us use a two-step backward finite difference equation with variable time increment to 
approximate the time-derivative in equation (12), i.e. 



70 Y.C. LI 

where 
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are three coefficients depending on the two-backward time increments Δ_1 and Δ_2. Subscripts - 1 
and - 2 denote the values of the physical quantities at time t - Δ_1and t - Δ_1 - Δ_2 respectively. 
The diffusion equation (12) is then equivalent to the variational equation: 

δII=0 ( 2 8 ) 

where Π is the variational functional, which is: 

where is the prescribed normal derivative of φ and η stands for the outer normal of the 
boundary. Cv stands for the portion of the boundary where the velocity of flow is prescribed. The 
value of φ has to be equal to the prescribed value φ* on the boundary Cφ. 

Figure 4 shows the finite element mesh for the problem. Because of the symmetry of the 
domain, only the first quadrant is considered. The outer boundary of the domain is chosen to be a 
constant ξ-curve. For the element within the sufficiently large domain, the value of φ in the 
elements are expressed by a regular four-node isoparametric interpolation of their nodal values. 
The region beyond the finite domain is occupied by an infinitely large element with a single 
degree of freedom, whose extrapolation function of φ is taken to be: 

where ξ and φ are, respectively, the values of ξ and φ on the outer boundary of the finite domain 
(Figure 4). Note that the boundaries of the finite elements, which share the outer boundary of the 
finite domain, do not coincide with the inner boundary of the infinitely large element since the 
outer boundary of the finite domain, the constant ξ-curve, is replaced by a broken line. However, 
our experience in finite element analysis tells us that this difference only results in a negligible 
error. It is obvious that equation (30) satisfies the condition of φ{ξ) = φ and the limiting condition, 
equation (20). Furthermore, equation (30) simulates the distribution of φ for sufficiently large 
ξ as shown in equation (21). Therefore, the shape function of the infinitely large element can be set 
to be: 

In forming the elemental coefficient matrix for the infinite element, the following integrals have 
been carried out: 
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where /J/ is a Jacobi determinant approximated by: 

Because of the single degree of freedom, the elemental coefficient matrix of the infinite element 
reduces to a scalar, which will be assembled into the global coefficient matrix of the finite element 
equations. The variation equation (28) is then converted to a set of algebraic equations. 

If the applied pressure Φw on the slot surface is uniform and the flow rate q at the well bore is 
prescribed, the first term in the functional, equation (29), can be easily proved to be: 

where q is defined positive for flowing from the well bore into the fracture. The coefficient 0.25 
stems from the fact that only the first quadrant of the finite domain is considered. Cv is the slot 
surface in this case. Κ is the permeability of the reservoir. Through the variational equation (28), 
this term becomes 0.25 (q/K)δΦw for prescribed flow rate q at the well bore. The term 0.25q/K will 
be added to the right-hand side of the finite element equation corresponding to the degree of 
freedom of the node at the well bore. The applied pressure Φw can be obtained in the solution of 
the finite element equations. 

If the applied pressure φw at the well bore is prescribed, the finite element equation 
corresponding to the degree of freedom of the node at the well bore will be modified in dealing 
with the constraint condition at the well bore. However, the flow rate q can be found by 
substituting the solution of φ into the equation, namely: 

where φ, φ_1 and φ_2 have been discretized in the finite element method. 
The result of the dimensionless applied pressure φwD on the slot surface for the case of the 

prescribed flow rate is then plotted and compared with the exact analytical solution {Figure 3). An 
excellent agreement between them can be seen. In the case of prescribed applied pressure φw,, the 
dimesionless flow rate at the well bore qD is plotted and compared with the exact solutions (Figure 
2). Amazingly, the two curves almost completely coincide. 
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Second, the infinite element method is used to analyse the transient pressure behaviour of a 
well intersected by a vertical finite conductivity fracture in an infinite slab reservoir. The fracture 
has a constant width bf and an impermeable crack tip. Material in the fracture has a higher 
permeability than that in the reservoir. Cinco-Ley et al.4 presented a semi-analytical solution for 
this problem. Li and Huang3 also studied this problem by means of the finite element method 
(FEM) with an extrapolation technique. Owing to the narrow crack, flow in the fracture can be 
considered to be one-dimensional. Thus, the governing equation in the conductive fracture is: 

where Kf is the permeability of the material in the fracture, and cf is the compressibility of the fluid 
in the fracture. In Cinco-Ley et al. ' s 4 work, the fluid in the fracture is considered to be 
incompressible, thus cf= 0. vn is the leak-off velocity, which is defined positive for outward flow 
of fluid from the fracture into the reservoir. Based on this definition, we have: 

on fracture surface Cv (35) 

According to equation (34), the leak-off velocity can be determined as: 

With the use of equations (35) and (36), the variation of the first integral of function Π in equation 
(29) becomes 

Employing integration by parts, we obtain 

For the impermeable crack tip, we have = 0. At the well bore, we have φ- φw and 

Thus, the variation of integral l becomes: 

If triangular elements or four-node isoparametric elements share the crack boundary Cv, the 
pressure φ can be linearly distributed in an interval between a pair of nodal points on the crack 
surface. Hence, the integral in the second term of equation (38) can be discretized as: 

where li is the length of the i-th interval, the superscripts (i) and (i - 1 ) denote the two ends of the 
interval and η is the total number of the intervals on the crack surface. Equation (39) is in a format 
ready for assembling into the global finite element coefficient matrix. The first term in equation 
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(38) can be used to deal with the boundary condition for either prescribed <Φw or q at the well bore. 
The flow rate for given Φw can be determined by: 

It can be seen in equation (40) that one more term is added to equation (33). 
Results for the dimensionless pressure ΦwD at the well bore with the use of this method are 

plotted against the dimensionless time tD and compared with those of Cinco-Leyer al.4 as shown 
in Figure 5, where the parameter FD is called dimensionless fracture conductivity and defined by: 

A large value of FD represents a highly conductive fracture. In Figure 5, our results and Cinco-
Ley's results are in good agreement forFD = π and 100π. Our results for FD = 0.2π thave a slightly 
larger difference from Cinco-Ley's results. However, it can be seen in Figure 5 that the curves 
plotted for the two results are parallel to each other. Furthermore, our results are very close to 
those presented by Li and Huang3 for FD = 0.2π. 

Cinco-Ley4 did not give the solution of q for prescribed applied pressure at the well bore. The 
solution is presented here as a complement (Figure 6). According to Cinco-Ley et al.'s results of 
ΦwD for prescribed flow rate q, solution for FD = 100π is very close to Kucuk and Bingham's2 

solution for an empty fracture. The complemented results for FD = 100π are also in excellent 
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agreement with Kucuk and Bingham's results. Hence, the solutions in lower conductivity fracture 
cases such as FD =π and FD = 0.2π can be considered correct. 

A sensitivity analysis has been conducted in order to estimate a proper size for the sufficiently 
large domain. Initially, the ratio of the average radius of the finite domain to the half crack length 
R/L is about 50 in our calculation. Afterwards, the elements, which share the outer boundary, are 
removed layer by layer. It is found that the solution does not change appreciably when the ratio 
R/L is equal to or large than 16 (Figure 7). Results also indicated that the solutions are accurate 
enough for practical purposes if at least R/L = 10 is considered. Therefore, this infinite element 
method is proved to be quite effective. 

AN EXAMPLE 
Consider a fully penetrating vertical fracture of length 2L in an infinitely large slab reservoir with 
a well located at the centre of the fracture. The size of the well is neglected in comparison with the 
fracture length. The basic equation governing the transient pressure behaviour in the finite 
conductivity fracture is shown as equation (34). However, in this equation the width of fracture bf 
is a function of x for the elliptically-shaped conductive fracture. With the use of equations (34) 
and (35), the variation of the first integral of Π gives: 
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where bf= 0 at the crack tip x = L. The pore pressure φ in each interval can be expressed by a linear 
interpolation function of its nodal values. Since bfin each fracture interval weakly depends on x, 
the average value of the crack width bf( i)can be used to approximate the crack width of the i-th 
interval. Hence, equation (42) can be partitioned as: 

where δφw = 0 at x = 0 if the pore pressure at the well bore is prescribed. Equation (43) can be 
imposed by the global finite element equations. 

The following material and geometrical constants are employed for the reservoir and the finite 
conductivity fracture in our computation: 

The in situ stress components are σx∞ = -2,000psi and σy∞ = -l,500psi (compression), and the 
initial pore pressure in the reservoir is φ0 = 800psi. The pressure applied to the well exceeds the in 
situ stress by 150.5psi, generating a crack with a crack-mouth-opening displacement of one third 
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of an inch at the well bore. As it drops to 100psi afterwards, the opened crack is retained by the 
sand in the fracture. This procedure of crack opening and sand filling is completed in such a short 
time that it may be assumed to take place instantly. Thus, the problem consists of two steps as 
shown in Figure 8. In the first step (Figure 8(a)), an inner pressure φi = l,650.5psi is applied to the 
crack surface. This step can be regarded as a superposition of two problems. The first problem has 
the solution of a uniform stress field with σx = -2,000psi, σy = - l ,500psi and τ xy= 0, and a 
uniform pore pressure field with φ = 800psi. In the second problem, the pore pressure is zero 
elsewhere except at the crack surface, where the pore pressure is 850.5psi. In the second step 
(Figure 8(b)), the applied inner pressure drops to 100psi and the crack is filled with sand. This 
step can also be divided into two problems. Although the geometry and loading condition are 
different from those in the first step, the solution of the first problem of the second step still gives 
uniform fields of stress and pore pressure which are the same as in the first step. Based on this 
analysis, the initial condition and boundary condition for pore pressure of the second problem of 
the second step are: 

on fracture surface Cv 

e l s e w h e r e 

and 
φw = -700 psi at the well bore 

The final solution of the second step can be obtained by superposition of these two problems. 
An uncoupled problem is considered, namely, the influence of the deformation on the transient 

pressure behaviour is neglected. The finite element mesh is shown in Figure 4. The flow rate at the 
well bore can be determined by: 
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The numerical results are shown in Figures 9-11. Figure 9 shows that the production rate 
decreases with increasing time if the applied pressure at the well bore is kept constant. The pore 
pressure distribution on the fracture and the x-axis are shown in Figures 10 and 11, which indicate 
that the pore pressure approaches the initial value when the material point gets further from the 
fracture. 

DISCUSSION AND CONCLUSION 

There are three ways to determine the flow rate at the well bore for the finite conductivity fracture 
problem. 

(1) The leak-off velocity vn can be calculated with equation (35). The flow rate at the well bore 
is the integral of the leak-off velocity along the crack surface. 

(2) The flow rate can be determined by equation (37). 
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(3) The flow rate can be determined by equations (33), (40) or (44). In fact, these equations 
mean that the term 0.25q/K is the difference between the left-hand side and the right-hand 
side of the finite element equation corresponding to the degree of freedom of the nodal 
point at the well bore. 

It is well-known that numerical derivatives generally contain larger errors. Hence, the second 
method has the largest errors because the flow rate depends on a numerical derivative at a single 
node at the well bore. Errors of the first method are next to the second. The flow rate depends on 
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the derivatives at several nodal points on the fracture surface and, finally, the flow rate is obtained 
by numerical integral. So, errors may be eliminated somehow. The third method has the highest 
accuracy since numerical derivatives never occur there. The computation demonstrates that the 
numerical results from the first and the third methods are close. However, large differences are 
found between the results from the second and the third methods. In Figure 2, it is noted that the 
numerical results of the flow rate in the third method for an empty fracture are almost the same as 
those of Kucuk and Brigham's2 exact solution. Therefore, the third method can be considered 
reliable. 

In this work, the approximate analytical solutions for two kinds of diffusion problems are 
presented. One of them is for the case of a single cylindrical well in an infinite medium, and the 
other is for the case of a slot in an infinite medium. Both solutions approach the exact solutions 
for sufficiently large time or distance from the material point to the internal boundary. The latter 
is applied to develop infinite elements for analysing seepage problems for a well in an infinitely 
large medium with a finite conductivity fracture. Comparison of the numerical results with the 
theoretical results by Kucuk and Brigham's and the semi-analytical results by Cinco-Ley et al.4 

demonstrate good accuracy and reliability. Sensitivity analysis shows a high effectiveness of this 
method. 

The purpose of developing the infinite elements is to analyse transient pressure behaviour of a 
hydraulically fractured well in an infinitely extended reservoir in a more complex case. An 
example of a transient pressure behaviour problem for an elliptically-shaped finite conductivity 
fracture in an infinite slab reservoir with the use of this infinite element method is presented. The 
effectiveness and accuracy of this method can be seen through this example. This method even 
can be used to solve the problem of time-dependent applied pressure or flow rate applied at the 
well bore, and the problem of hydraulic fracture propagation, etc. 
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